Jump to content
EleTD.com
Twilice

Random = not enough Random?

Recommended Posts

Since big changes on the whole gameflow balance (uppgraded towers are more powerfull) The random table needs to be changed.

There is really a very big chance to get a 6 element spawn, but it is very rare to get a dual tier 3. Since either you didn't get any tier 2 at all, or you died before level 55 (which you get your first level 3)

[not exactly true, but I hope you get my point]

I will search for the current table we have now, but if someone have it now it would be good.

Share this post


Link to post

not always.. i played games with a t3 at wave 40..

if i'm not wrong, it's equal chance for any element to be summoned..although somehow it is possible to get the exact same elementals for multiple games in a

row

i've been getting more 4 or 5-ele games these days with newer betas..haven't seen 6-ele for some time

Share this post


Link to post

point is - since max 2 interests, and no tier 2s until is it wave 30? it alwaays starts of with like 4 element types. and then there are 7 more picks - and for noone of those to be a new element... well it's like 5% chance to get a 4ele build. and like at least 50% chance to get a 6ele build. booring. 13est is right imo. holepercent is just lucky :P

Share this post


Link to post
point is - since max 2 interests, and no tier 2s until is it wave 30? it alwaays starts of with like 4 element types. and then there are 7 more picks - and for noone of those to be a new element... well it's like 5% chance to get a 4ele build. and like at least 50% chance to get a 6ele build. booring. 13est is right imo. holepercent is just lucky :P

No tier 2 until level 25. This was bumped up from 20, and I was afraid this would be the result.

Share this post


Link to post

random is random. every random game shouldn't be posssible - but most important, every random game should be different. therefore i agree that after 4.0 we should reconsider what % chances a new element should have at different stages, so that 6ele build doesn't have a >50% chance to show up. we could hcange the % chance to get a new element after you have 4 eles so that the chance for a 4, 5 resp 6 ele build is how we want them to be.

Share this post


Link to post

if the builds are really balanced, most if not all (3)/4/5/6-ele builds should be playable..

then again, 6-ele isn't as strong as it is.. or at least not as strong as pb. so the chance for a 4/5/6-ele build should be somewhat equal..

Share this post


Link to post

I disagree, getting 6 element build 33% of the times will be very "one sided". But using 4-5 elements then you will a whole different towers. And I would like to se somewhone beat 6 element build without any tier 2 tripple tier 3 dual or tripple before level 50.

Share this post


Link to post

Not sure what you mean. Tier 2 elementals can only be randomed on or after level 25. Tier 3 on or after level 40. I propose going back to 20/40 instead of 25/40.

Share this post


Link to post
Guest M45T3R

The 6 element build is now crap in the beta #23 because the tier 1 support triples have been nerfed so badly they are pretty much useless, which is why it's important to have as many tier 2 triples as possible. I don't see the problem here.

Share this post


Link to post

i ran a pair of simulations (on my graphing calculator. damn that thing is slow) using 100 trials each. only the final result of 3-ele, 4-ele, 5-ele, or 6-ele was recorded.

Up to 2 interest picks were allowed in both.

Pure essence picks were allowed in both (a pure essence was given in place of the element randomed if it had already been picked 3 times).

In Sim1, I used the 25/40 rule, which resulted in 0, 11, 51, and 38 of 3-ele, 4-ele, 5-ele, and 6-ele builds, respectively.

In Sim2, I used the 20/40 rule, which resulted in 0, 8, 52, 40.

So i don't see the difference.

Share this post


Link to post

maybe the difference is that in beta 20 we died before we had more than 4 eles?:P I dunno. thanks for the numbers and they prove that we'll have to change the chances - but should be do so pre or post 4.0?

Share this post


Link to post

seems like we have alot of theese kind of changes for 4.1 so let say 4.1?

And I think ALOT more ideas will come when it goes public, I remember how active the forums became when 4.0pb was out.

Share this post


Link to post
i ran a pair of simulations (on my graphing calculator. damn that thing is slow) using 100 trials each. only the final result of 3-ele, 4-ele, 5-ele, or 6-ele was recorded.

Up to 2 interest picks were allowed in both.

Pure essence picks were allowed in both (a pure essence was given in place of the element randomed if it had already been picked 3 times).

In Sim1, I used the 25/40 rule, which resulted in 0, 11, 51, and 38 of 3-ele, 4-ele, 5-ele, and 6-ele builds, respectively.

In Sim2, I used the 20/40 rule, which resulted in 0, 8, 52, 40.

So i don't see the difference.

Neat, that was an interesting read. I just want to confirm, that 25/40 and 20/40 is inclusive meaning you can get tier 2 at 25/20. I suppose I am surprised by the results, but your method is sound. Though I wonder if we can verify this on excel or something just to double check.

Numbers are staggering...this is something that can be dealt with easily before because it is pure math. Ignoring 3-ele, there needs to be less 5/6 and more 4.

Share this post


Link to post

sooo... do we want 33% 6ele 33% 5 ele 33% 4ele (no!)

ooor... do we want 5% chance for LDWF 5% chance for LDWN --- .... 5% chance for DWFNE and 5% chance for LDWFNE. (75% chance for 4ele, 25% chance for 5ele and 5% chance for 6ele i know 105% :P didn't care to round ) (no, we don't want this either!)

ooor... do we want something in between? we could try double the chance of 6ele over the chance of a 5ele build, and half the chance for each 4ele build compared to 5ele. so, X/2% chance for each 4ele build. X% chance for each 5ele build and 2X% chance for each 6elebuild, well there is only one :)

this would make each 4ele 3.5% of chance and each 5ele 6.9% and periodics build 13.8% chance. total chance for a 4ele 51.7%, 5ele 34.5% chance and 6ele 13.8% chance

Id's say this is about what we want. and the way there, ie what the chances different eles should have at different occasions is pure math as karawasa mentioned. but before we calc - what do we want? IMO this is just about it, perhaps a little smaller chance for 5ele?:

each 4ele 3.5% of chance and each 5ele 6.9% and periodics build 13.8% chance.

total chance for a 4ele 51.7%, 5ele 34.5% chance and 6ele 13.8% chance

Edit: oops, calced a little bit wrong. calced with 5 5ele builds, although there are 6. and with a total of 21 builds, whilst there are 22. the difference would be rather small - 5ele would have a greater chance maybe 40% too tired to edit now.

Share this post


Link to post

i decided to follow up with a look at the number of level 2's and level 3's.

100 trials each. each row is independent data (yes i was being inefficient. speaking of efficiency, you should make that computer program, kara).

# of eles at/above level 2: 1  2  3  4  5
20/40 restrictions 0 13 63 22 2
25/40 restrictions 1 14 52 28 5

# of eles at/above level 3: 0 1 2 3
20/40 restrictions 21 60 17 2
25/40 restrictions 18 66 16 0

*yeah, yeah, you can't go above level 3.

note, of course, that you can't have a tier 2 triple if you don't have at least 3 eles at/above level 2, and you can't have a tier 3 dual if you don't have at least 2 eles at level 3.

Share this post


Link to post

Looks like you forgot to calculate with pures and inersts.

I've written a small Ruby script that calculates all possible combinations for me but there are very very many ways to pick.

After level 40 389970 ways to pick. (Not different possibilities but ways to pick. DEL and DLE and EDL are different ways to pick.)

Time to come to my numbers (witch say something quite interresing^^)

First 25/40 (in 25 could be the first Tier2; in 40 could be the first Tier3)

That means 11% of the games will end in a 11223$$ (= 5-Element game) game. And that could be true $$ is really often imho.

You can see the 6 element game is 7,48% and the best 6 Element game (122222) has got ~0,5%.

     %        Ways    T1   T2   T3    $    P
11.22%   69387840x    5    3    1    2    0
  7.48%   46258560x    6    3    1    1    0
  6.11%   37774080x    5    4    1    1    0
  5.93%   36691200x    5    2    1    3    0
  5.50%   34020000x    6    3    0    2    0
  5.50%   34020000x    5    3    0    3    0
  4.62%   28589760x    5    3    2    1    0
  4.45%   27518400x    6    2    1    2    0
  3.74%   23129280x    4    3    1    3    0
  3.52%   21772800x    5    4    0    2    0
  3.52%   21772800x    6    4    0    1    0
  3.17%   19580400x    6    2    0    3    0
  3.05%   18887040x    6    4    1    0    0
  2.82%   17470080x    5    3    1    1    1
  2.38%   14752800x    5    2    1    2    1
  2.31%   14294880x    4    3    2    2    0
  1.93%   11966400x    5    2    2    2    0
  1.74%   10782720x    5    4    2    0    0
  1.54%    9529920x    6    3    2    0    0
  1.53%    9443520x    4    4    1    2    0
  1.41%    8735040x    4    3    1    2    1
  1.19%    7376400x    6    2    1    1    1
  1.19%    7376400x    4    2    1    3    1
  0.97%    5983200x    6    2    2    1    0
  0.97%    5983200x    4    2    2    3    0
  0.94%    5823360x    6    3    1    0    1
  0.87%    5391360x    4    4    2    1    0
  0.70%    4337280x    5    4    1    0    1
  0.69%    4273920x    6    1    1    3    0
  0.64%    3939840x    5    3    2    0    1
  0.64%    3939840x    4    3    2    1    1
  0.60%    3723840x    5    2    2    1    1
  0.60%    3697920x    5    5    1    0    0
  0.59%    3628800x    4    4    0    3    0
  0.59%    3628800x    5    5    0    1    0
  0.59%    3628800x    6    5    0    0    0
  0.48%    2998800x    5    1    1    3    1
  0.45%    2792880x    4    2    2    2    1
  0.35%    2185920x    5    2    1    1    2
  0.35%    2168640x    4    4    1    1    1
  0.29%    1799280x    6    1    1    2    1
  0.27%    1658880x    4    3    3    1    0
  0.27%    1658880x    5    3    3    0    0
  0.27%    1639440x    4    2    1    2    2
  0.26%    1588320x    3    3    2    3    0
  0.18%    1140480x    5    3    1    0    2
  0.18%    1140480x    4    3    1    1    2
  0.16%     970560x    3    3    1    3    1
  0.15%     930960x    6    2    2    0    1
  0.12%     723600x    5    1    1    2    2
  0.11%     656640x    3    3    2    2    1
  0.10%     620640x    3    2    2    3    1
  0.10%     596160x    4    4    2    0    1
  0.09%     546480x    6    2    1    0    2
  0.08%     518400x    4    4    3    0    0
  0.08%     482400x    4    1    1    3    2
  0.06%     364320x    3    2    1    3    2
  0.05%     311040x    4    2    2    1    2
  0.05%     289440x    6    1    1    1    2
  0.04%     276480x    3    3    3    2    0
  0.03%     207360x    5    2    2    0    2
  0.03%     190080x    3    3    1    2    2
  0.03%     155520x    4    3    3    0    1
  0.03%     155520x    4    3    2    0    2
  0.02%     112320x    4    4    1    0    2
  0.02%     103680x    4    2    1    1    3
  0.02%     103680x    3    2    2    2    2
  0.01%      69120x    5    2    1    0    3
  0.01%      54000x    4    1    1    2    3
  0.01%      54000x    5    1    1    1    3
  0.01%      51840x    3    3    3    1    1
  0.01%      51840x    3    3    2    1    2
  0.01%      34560x    3    2    1    2    3
  0.00%      25920x    4    3    1    0    3
  0.00%      18000x    3    1    1    3    3
  0.00%      10800x    6    1    1    0    3
  0.00%       8640x    2    2    2    3    2
  0.00%       8640x    3    3    1    1    3
  0.00%       2880x    2    2    1    3    3

Now with the 20/40 rule

     %        Ways    T1   T2   T3    $    P
10.90%   92664000x    5    3    1    2    0
  7.26%   61776000x    6    3    1    1    0
  6.70%   56980800x    5    4    1    1    0
  5.22%   44380800x    5    2    1    3    0
  5.04%   42897600x    5    3    2    1    0
  4.91%   41731200x    5    3    0    3    0
  4.91%   41731200x    6    3    0    2    0
  3.91%   33285600x    6    2    1    2    0
  3.63%   30888000x    4    3    1    3    0
  3.44%   29257200x    6    4    0    1    0
  3.44%   29257200x    5    4    0    2    0
  3.35%   28490400x    6    4    1    0    0
  3.04%   25822800x    5    3    1    1    1
  2.61%   22226400x    6    2    0    3    0
  2.52%   21448800x    4    3    2    2    0
  2.28%   19375200x    5    4    2    0    0
  2.23%   18964800x    5    2    1    2    1
  1.84%   15681600x    5    2    2    2    0
  1.68%   14299200x    6    3    2    0    0
  1.68%   14245200x    4    4    1    2    0
  1.52%   12911400x    4    3    1    2    1
  1.14%    9687600x    4    4    2    1    0
  1.12%    9482400x    6    2    1    1    1
  1.12%    9482400x    4    2    1    3    1
  1.01%    8607600x    6    3    1    0    1
  0.92%    7840800x    6    2    2    1    0
  0.92%    7840800x    4    2    2    3    0
  0.91%    7732800x    5    4    1    0    1
  0.82%    6933600x    5    3    2    0    1
  0.82%    6933600x    4    3    2    1    1
  0.77%    6523200x    5    5    1    0    0
  0.64%    5443200x    5    5    0    1    0
  0.64%    5443200x    6    5    0    0    0
  0.62%    5270400x    5    2    2    1    1
  0.57%    4876200x    4    4    0    3    0
  0.56%    4757760x    6    1    1    3    0
  0.46%    3952800x    4    2    2    2    1
  0.45%    3866400x    4    4    1    1    1
  0.41%    3452400x    5    1    1    3    1
  0.36%    3024000x    5    2    1    1    2
  0.35%    2980800x    5    3    3    0    0
  0.35%    2980800x    4    3    3    1    0
  0.28%    2383200x    3    3    2    3    0
  0.27%    2268000x    4    2    1    2    2
  0.24%    2071440x    6    1    1    2    1
  0.23%    1976400x    4    3    1    1    2
  0.23%    1976400x    5    3    1    0    2
  0.18%    1490400x    4    4    2    0    1
  0.17%    1434600x    3    3    1    3    1
  0.15%    1317600x    6    2    2    0    1
  0.15%    1296000x    4    4    3    0    0
  0.14%    1155600x    3    3    2    2    1
  0.10%     878400x    3    2    2    3    1
  0.10%     853200x    5    1    1    2    2
  0.09%     756000x    6    2    1    0    2
  0.07%     568800x    4    1    1    3    2
  0.06%     504000x    3    2    1    3    2
  0.06%     496800x    3    3    3    2    0
  0.06%     486000x    4    2    2    1    2
  0.05%     388800x    4    3    3    0    1
  0.05%     388800x    4    3    2    0    2
  0.04%     341280x    6    1    1    1    2
  0.04%     329400x    3    3    1    2    2
  0.04%     324000x    5    2    2    0    2
  0.03%     280800x    4    4    1    0    2
  0.02%     162000x    4    2    1    1    3
  0.02%     162000x    3    2    2    2    2
  0.02%     129600x    3    3    3    1    1
  0.02%     129600x    3    3    2    1    2
  0.01%     108000x    5    2    1    0    3
  0.01%      64800x    4    1    1    2    3
  0.01%      64800x    5    1    1    1    3
  0.01%      64800x    4    3    1    0    3
  0.01%      54000x    3    2    1    2    3
  0.00%      21600x    3    1    1    3    3
  0.00%      21600x    3    3    1    1    3
  0.00%      13500x    2    2    2    3    2
  0.00%      12960x    6    1    1    0    3
  0.00%       4500x    2    2    1    3    3

You see there is not very much difference (after level 55!)

But what is if you look at an average game that ends with level 40.

25/40

     %        Ways    T1   T2   T3    $    P
17.97%     354240x    5    2    0    1    0
13.48%     265680x    4    2    0    2    0
12.05%     237600x    5    1    0    2    0
  8.04%     158400x    4    1    0    3    0
  6.14%     120960x    4    3    0    1    0
  6.14%     120960x    5    3    0    0    0
  5.26%     103680x    4    2    1    1    0
  4.82%      95040x    6    1    0    1    0
  4.49%      88560x    6    2    0    0    0
  3.51%      69120x    5    2    1    0    0
  2.99%      59040x    3    2    0    3    0
  2.74%      54000x    4    1    1    2    0
  2.74%      54000x    5    1    1    1    0
  2.05%      40320x    5    0    0    3    0
  1.75%      34560x    3    2    1    2    0
  1.31%      25920x    4    3    1    0    0
  1.02%      20160x    6    0    0    2    0
  1.02%      20160x    3    3    0    2    0
  0.91%      18000x    3    1    1    3    0
  0.55%      10800x    6    1    1    0    0
  0.44%       8640x    4    4    0    0    0
  0.44%       8640x    3    3    1    1    0
  0.15%       2880x    2    2    1    3    0

20/40

     %        Ways    T1   T2   T3    $    P
17.64%     475200x    5    2    0    1    0
13.23%     356400x    4    2    0    2    0
10.02%     270000x    5    1    0    2    0
  7.62%     205200x    5    3    0    0    0
  7.62%     205200x    4    3    0    1    0
  6.68%     180000x    4    1    0    3    0
  6.01%     162000x    4    2    1    1    0
  4.41%     118800x    6    2    0    0    0
  4.01%     108000x    5    2    1    0    0
  4.01%     108000x    6    1    0    1    0
  2.94%      79200x    3    2    0    3    0
  2.41%      64800x    4    3    1    0    0
  2.41%      64800x    4    1    1    2    0
  2.41%      64800x    5    1    1    1    0
  2.00%      54000x    3    2    1    2    0
  1.50%      40320x    5    0    0    3    0
  1.27%      34200x    3    3    0    2    0
  0.80%      21600x    3    3    1    1    0
  0.80%      21600x    3    1    1    3    0
  0.80%      21600x    4    4    0    0    0
  0.75%      20160x    6    0    0    2    0
  0.48%      12960x    6    1    1    0    0
  0.17%       4500x    2    2    1    3    0

You see the difference in level 40 gets a bit bigger. I'll attach the script. Simply play with the variables at the top of if. (T2BORDER and T3BORDER and LEVELS are most relevant here...)

etdcalc.zip

Share this post


Link to post

I saw that it is quit rare to get a 4 element build with 2 or more tier 3 elements.

I am not good at making up numbers and such, but what about if there is a "stop" where you can't get any level 1 elements more?

It can be quit anoying to get a level 1 tier at level 50/55. Am I right?

Share this post


Link to post

no 13est. since some of the best ways to play a 6ele or 5ele is to start with 4 eles at tier 2, and then add up new elements, it should not be impossible to add elements late, just a general lower chance to get a new element once you have 4 or 5 elemenets.

Share this post


Link to post

there are 15 combinations of 4 elements, 6 combinations of 5 elements and one combination for 6 elements.

6-element, for the most part, ends almost the same way with full supports and periodic.

5-element, can be played as a 6-element build with missing supports and periodic or as a 4-ele build with upgraded duals

4-element is variety, where t3 duals dominate.

so most games should be 4-ele with less chance for 5/6-ele builds.

Share this post


Link to post

I guess some posters here don't understand what "6-ele" means. It does not mean "all level 1", it means "at the end of the game I have each ele at least once".

A typical 6 ele could look like this: FNW-NWF-L-L-E-D-W. So nowadays you have to start with a 4 ele build, and later on it makes equal sense to level up into 4 ele or to add all 6, as the resulting support strength should be equal, if kara would listen to me. :P

Share this post


Link to post

×
×
  • Create New...